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Heat transfer in transient and unsteady flows past a heated 
circular cylinder in the range 1 R G 40 

By C. J. APELT A N D  M. A. LEDWICH 
Department of Civil Engineering, University of Queensland, Australia 

(Received 6 December 1977 and in revised form 29 January 1979) 

The response of a heated circular cylinder to impulsive and sinusoidal variations in the 
velocity of flow past it  has been simulated by numerical integration of the governing 
equations. The fluid has been treated as viscous and incompressible and as having 
constant properties. The range of Reynolds number investigated was 1 G R < 40. 
Since vortex shedding normally does not occur in this range, the flows were treated 
as symmetrical. The thermal and flow transients are presented for the following 
cases. : 

(i) impulsive starts from rest to final steady state Reynolds numbers 1, 5, 10, 26.67; 
(ii) impulsive increases in velocities of 50 % magnitude from steady state Reynolds 

numbers 1, 10 and 26.67; 
(iii) sinusoidal variation in velocity with amplitude of 10 yo impressed on a mean 

flow at Reynolds number 10. 
Results are also given for the thermal transients associated with instantaneous 

changes in cylinder temperature a t  Reynolds numbers 1,5 and 40. The results obtained 
for transient and steady state flow parameters are in agreement with those obtained 
numerically and experimentally by other workers and the results for steady state heat 
flux from the cylinder are in agreement with experimental values. The new results 
obtained for heat transfer in unsteady flows provides information which is relevant 
to the operation of hot-wire anemometers. 

1. Introduction 
Theoretical studies of the heat transfer from a heated circular cylinder in a flowing 

fluid have been carried out by a number of authors. Cole & Roshko (1954), Levey 
(1959), Illingworth (1963), Kassoy (1967) and Wood (1968) used the Oseen approxi- 
mation while Hieber & Gebhart (1968) and Hodnett (1969) used the method of 
matched asymptotic expansions. In  all of these studies, it is required that the Reynolds 
number R tend to  zero; the highest order results, those of Wood and of Hieber & 
Gebhart, give values for the Nusselt number which correlate with the experimental 
data of Collis & Williams (1959) within 3 yo for R < 0.4. The only theoretical study 
we know which deals with unsteady heat transfer at low Reynolds numbers is that of 
Davies (1976) who used an Oseen approximation of the energy equation to estimate the 
fluctuating heat transfer from a heated cylinder at R < 1. 

Many numerical solutions of impulsively started flow past a circular cylinder have 
been reported since the first was completed by Payne (1958). Most of these were carried 
out for small values ( <  100) of the final steady state Reynolds number and it is 

0022-1 120/79/4362-7960 $02.00 0 1979 Cambridge University Press 



762 C .  J .  Apelt and M .  A .  Ledwich 

surprising that none included any computation of heat transfer from the cylinder. 
The only work published on numerical calculation of heat transfer from a cylinder 
in flows a t  low Reynolds numbers prior to that reported in this paper is that of Dennis, 
Hudson & Smith (1968) and this was restricted to steady flows. 

The numerical solutions reported below were computed in order to provide a 
reasonably detailed description of the heat transfer characteristics of a heated circular 
cylinder in unsteady flows a t  Reynolds numbers in the range in which vortex shedding 
does not normally occur, i.e. R < 40. The details of heat transfer and of fluid dynamic 
functions have been obtained for the following cases : 

(i) impulsive start from rest to final steady state Reynolds numbers of 1, 5, 10 and 
26.67, with the cylinder temperature held constant; 

(ii) impulsive increases in velocity of 50 % magnitude from steady state Reynolds 
numbers 1, 10 and 26-67, with the cylinder temperature held constant; 

(iii) sinusoidal variation in velocity impressed on a mean flow a t  a Reynolds number 
of 10, with the cylinder temperature held constant. 

In  addition the response of heat transfer to changes in cylinder temperature while 
the flow is steady was computed for instantaneous increases in cylinder temperature 
in flows at Reynolds numbers of I, 5 and 40. 

The results of the numerical solutions provide new data concerning the heat transfer 
from a heated cylinder in impulsively started flow, the response of heat transfer and of 
fluid dynamic functions for a heated cylinder in unsteady flow and the heat transfer 
transients when the temperature of a cylinder in steady flow is changed suddenly. 
In  addition to the fundamental value this information possesses in itself, it  provides 
data which can be used for the development of a mathematical model of a complete 
hot-wire anemometer system. The construction of such a model has been described by 
Bullock & Ledwich (1973). 

2. Mathematical model 
In  the numerical solutions we consider two-dimensional flow of an incompressible 

fluid with constant viscosity and thermal conductivity past a circular cylinder of 
negligible thermal inertia. The effects of heating of the fluid by viscous dissipation 
and of radiation from the cylinder are neglected. 

With the foregoing assumptions, the Navier-Stokes equation for the fluid motion 
can be expressed in the form of the vorticity-transport equation 

in which all quantities have been made dimensionless by scaling with respect to the 
radius of the cylinder a, and the velocity of the approach stream U.  In  the equation 
( l ) ,  u and v are the Cartesian components of the velocity vector in the x and y directions, 
respectively, c is the vorticity and the Reynolds number, R, is 2Ua[u, where v is the 
kinematic viscosity. The dimensionless quantities in equation (1)  are related to 
dimensional quantities, indicated with a prime, as follows : 

x = x'/a; u = d / U ;  t = t 'U/a; c = gla/U. 
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Introduction of the stream function, $, such that u = a$/ay, v = - a$/ax, leads to 
the relation v y  = -6 .  
The energy equation can be expressed as 

V2T 
aT a(uT) a(vT) 2 -+- +-=- 
at ax ay RPr (3) 

which is of the same form as the vorticity transport equation. The dimensionless 
temperature, T ,  is defined as (T' - TL)/(TL- TL), where TL is the temperature of the 
approach stream, TL is the temperature of the cylinder, Pr, the Prandtl number, is 
V / K ,  and K is the thermal diffusivity of the fluid. The value assigned to Pr is that 
conventionally used for air, 0.7. The boundary conditions which solutions of the 
governing equations (1)' (2) and (3) must satisfy are 

u=O, v = O ,  T = l  at r = l ;  

u = l ,  v = O ,  T = O  at r - foo .  

The effects of buoyancy are neglected in equation (1) ;  the experimental studies of 
Collis & Williams (1959) showed that this is a valid approximation if R > Gt, where 
G is the Grashof number, PAT'gd3/v2, in which P is the coefficient of thermal expansion 
of the fluid, AT' is a measure of the magnitude of temperature differences in the fluid, 
g is the acceleration due to gravity and d is the diameter of the cylinder. The use of 
the stream function implies that rates of change of density of the fluid due to changes 
in temperature are negligibly small so that the mass-conservation equation reduces to 
the statement that the velocity field is solenoidal. In  the present context this approxi- 
mation is valid if (/~AT'K)/(UL) < 1 (Batchelor 1967). For air over a wide range of 
temperatures the inequality can be expressed approximately in the S.I. unit system, 
as AT'IR g 200, provided that the length scales for velocity gradients and for tem- 
perature gradients are of the same order; this was found to be the case for the range of 
R considered in this paper. Use of no-slip boundary conditions a t  the surface of the 
cylinder implies that d is large compared to the mean free path in the fluid. 

3. Numerical solution 
3.1. Co-ordinate transformation 

In order to simplify treatment of the normal gradient conditions at the surface of the 
cylinder the numerical solutions were computed in a transformed co-ordinate system 
defined by 

where 8 and r are polar co-ordinates and k, a scale factor, is related to the number of 
integral subdivisions of the complete circumference of the cylinder (2n) by k = n/n. 
In the transformed co-ordinate system the governing equations take the form, 

f ;  = -k8, 7 = klnr, 
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3.2. Finite difference approximations 
The equations ( l a )  and (3a)  were integrated by the Alternating Direction Implicit 
(A.D.I.) method, with the convective terms discretized in a manner that, in itself, 
conserves kinetic energy so that there is no false dissipation introduced as a result of 
the discretization of these terms. As pointed out by Arakawa (1966)) such discretiza- 
tion also avoids nonlinear instability which has its origin in space-truncation errors, a 
necessary requirement for successful numerical integration over long times. This choice 
of method was based on previous extensive comparative studies which showed that it 
possesses good accuracy and satisfactory economy in the context of the present 
application. 

Each complete step of integration in time of the equations ( l a )  and (3a)  consisted 
of two half steps, each of length at, and the finite difference approximations to the 
equation (1 a )  for the pair of half steps are 

- (k%j+l-$rl,j-l ) gm+1 x-1,j- ($Zl,j+l-$L,j+l) C&+1+ ($Zl,j-l--$L,j-d C&-11 

(5 a) -- - 2 A R i . j  [(CZYj - 2 C W  + C Z t j )  + (C&+1- 2CTj + C?3-1)1, 

Aij m+1 &m2- C Z ’ )  +~[($ciml,1+1-$~+l,j-l) C2+1,j 
1 

- ($?-1,j+1- $Tl,j-l)CZtj- ($!L.j+l-$rl,j+J c c g 1 +  ($” a+i,j-i- $Tl,j-i) Ci,j-11 

(5b) -- 2Ai9i [(gp+; 

m+2 

R 2+1 j- 2Crt’ + Cr:tf) + (Cri’,”l- 2CTtz + czt-1)]9 - 

in which CTj denotes C(iSE, $7, m&) and A i , j  denotes (k/hri , j)2 where h = 8E = 87, is 
the interval of spatial resolution in the transformed co-ordinates. The truncation error 
for the system of equations (5a)  and (5b) is O(W) + O(h2) for R 2 1. The finite difference 
approximations for the numerical integration of ( 3  a)  are similar to those given above 
for the integration of (1  a).  

The equation (2a) was approximated by central differences, with truncation error 
O(h2), and the solution of the resulting set of simultaneous difference equations was 
computed with the Successive Over Relaxation (S.O.R.) process, using the optimum 
accelerator. 

3.3. Boundary conditions 

All of the numerical solutions were computed in the range of R for which vortex 
shedding does not normally occur and the flow is symmetric. This fact was used to 
limit the computations to one half of the flow field by the application of symmetry 
conditions along the radii corresponding to 8 = 0 and rr. 

At the surface of the cylinder ( r  = 1, 7 = 0) the conditions applied were $ = 0, 
T = 1 or as specified, for cases in which the temperature of the cylinder itself was 
varied. The values of 5 on the surface of the cylinder were calculated from the expres- 

(6) 
sion 

Ci, o = - 3-4,. 0 $i, 1 - &, 1 4, o/Ai,1 
which incorporates the no-slip condition with truncation error O(h2). 
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In a numerical solution it is not possible to satisfy exactly the boundary conditions 
for r+co and some approximation to them must be imposed at a large but finite 
radius. Some authors have simply imposed the uniform flow conditions, (4b ) ,  at finite 
distance from the cylinder. However, Apelt (1958) and Takaisi (1969) have demon- 
strated that this simple procedure is unsatisfactory and leads t o  substantial in- 
accuracies unless the radial distance at which the conditions ( 4 b )  are imposed is very 
large, of order 100 times the radius of the cylinder. The numerical solutions described 
here had to be completed within a modest amount of computer time and it was neces- 
sary, for this reason, to limit the computational domain to one considerably smaller 
than that for which the conditions (4b)  could be used. Some authors, e.g. Kawaguti 
(1953), Keller & Takami (1966) and Takami & Keller (1969), have dealt with this 
problem, for the case of steady flows, by using the asymptotic expressions for $ and 
5 obtained by Imai (1951) from the Oseen approximation to the Navier-Stokes 
equation. This procedure was not used here because our interest was essentially in 
calculation of unsteady flows and Imai’s result is valid only for steady flow and, 
further, his result is strictly valid only for small values of R at the distances from the 
cylinder where the boundary conditions have to be applied in the numerical solutions. 
The approach adopted was to specify, at the outer limits of the numerical solution 
domain, values of the gradients in the radial direction of 5 and T which are consistent 
with Imai’s asymptotic result. This procedure is similar to that used for steady flows 
by Apelt (1958) in solving the Navier-Stokes equation and by Dennis, Hudson & 
Smith (1968) in solving the energy equation. Use of the first term of Imai’s asymptotic 
expression for 5 a t  large T leads to the relationship, for flow in the positive 5 direction, 

&2> 8)  = (rl/%)* exp [awl - r2) sin2 401. (7) 

To the same order of approximation, the Oseen solution of the energy equation leads 
to the relationship, 

T(r2,  6) /T(r i j  0 )  = (rJr2)& exp [&RPr(r,  - r2) sin2 801. (8) 

The expression (8) is equivalent to that used by Dennis, Hudson & Smith (1968). 
Use of the gradient conditions for 5 and T at large r given in (7) and (8) avoids con- 
straining these quantities to incorrect values while ensuring that their spatial dis- 
tribution will be generally in conformity with that given by the Oseeii approximation. 
The values assigned to  $ at large r were those for the uniform stream. This is not 
consistent with equation (7) but computational tests indicated that the accuracy of 
the numerical solutions so obtained were satisfactory nevertheless, despite the 
acknowledged lack of elegance in the treatment of the boundary conditions for $. 

3.4. Some numerical details 
Previous numerical experiments had shown that the maximum value which can be 
used for the half time step, St, in the integration of the equations ( 5 )  without encounter- 
ing instability is approximately the same as that which would apply to  the complete 
time step in the explicit method for integrating the same equations. If the spatial 
resolution is such that there are 2n intervals of subdivision of the complete circum- 
ference of the cylinder, the stability condition can be expressed as 6t .c 0*125R(7~ /n )~ .  
The numerical experiments also had confirmed that good accuracy is achieved if the 
time step used is close to the limit for stability. Consequently, in all cases except where 
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otherwise noted, St was set a t  a value which was 10 to 20 yo smaller than the stability 
limit. Numerical tests confirmed that the results obtained for unsteady flow cal- 
culations with this value of St were virtually identical a t  the same times as those 
computed with St set a t  the stability limit. 

In  the cases of impulsive starts from rest, our chief interest was in the final steady 
state values, both in themselves and also as providing the initial conditions from 
which various transients were to begin. The computing budget available provided for 
a total of only 64 h on an IBM 360/50H computer (cycle time 2 p s )  and, in order to 
reduce the amount of computing required to produce steady state values from 
impulsive starts, a simple stratagem was used with very satisfactory results. This 
involved computing an impulsive start through to steady state vaIues at a coarser 
spatial discretization than that required for fine accuracy; interpolation was then 
applied to produce an approximate steady state solution at the finer discretization 
and this was used as the starting point for the final computation of the accurate steady 
state values. In  most cases, the coarser discretization used was only twice as coarse 
as the final one but, even so, the computational effort required to produce the final 
steady state values was reduced to approximately one-tenth that which would have 
been required if the impulsive start had been computed from the beginning a t  the 
finer resolution. The results presented here have been obtained a t  a final spatial 
resolution such that n = 20, i.e. there were 40 intervals in the complete circumference 
of the cylinder, unless otherwise stated. The boundary conditions (7) and (8) were 
applied a t  r = 23.14. 

The solution of the finite difference equations derived from equation (2a)  was com- 
puted to an absolute precision better than 10-4 at each time step. 

4. Numerical results 
4.1. Steady state flow quantities 

A selection of the results obtained a t  steady states is presented in figures 1 to 3 to 
provide an indication of the accuracy achieved with the numerical solutions. In  
assessing the accuracy of our solutions we are now able to make use, in retrospect, of 
material published after our work was completed. The most significant of this is 
contained in the careful numerical solutions by Nieuwstadt & Keller (1973) of the 
steady state form of equations ( 1 )  and (2) and in the meticulously obtained experi- 
mental data of Coutanceau & Bouard (1977). 

In figure 1 the values we calculated for the total drag coefficient, Cot, are shown to 
be in close agreement with those obtained by Nieuwstadt & Keller and also with those 
of Collins & Dennis (1973) and of Dennis & Chang (1970) for values of R from 5 to 40. 
Over this range all of the numerical results fall close to the mean line of the experimental 
results of Tritton (1959). At R = 1 our value of C,, lies at the upper range of Tritton’s 
data while the result of Nieuwstadt & Keller lies a t  the lower range of the experi- 
mental data. Our results for the separate contributions from pressure drag and friction 
drag expressed as the coefficients C,, and CDf are in close agreement with those of 
Collins & Dennis and of Dennis & Chang. 

The length of the wake bubble, L, in our calculations is compared in figure 2 with 
the results for zero blockage which Coutanceau & Bouard inferred from their experi- 
mental data. The agreement between the two sets of results is very close at all values 
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of R. The independent numerical results of Nieuwstadt & Keller, of Collins & Dennis 
and of Dennis & Chang are also in close agreement with ours except for the rather 
large value of L obtained by the latter authors at R = 40. The results obtained for 
separation angle, S,, are also shown in figure 2. Our results are closer to those of 
Coutanceau & Bouard for zero blockage than are those of the other numerical studies 
for values of R less than 30. At R = 40 our result is somewhat larger than that of 
Coutanceau & Bouard which is in closer agreement with the results from the other 
numerical solutions. The magnitude and location of the maximum reverse velocity in 
the wake bubble are shown in figure 3. Our results for the magnitude of the maximum 
reverse velocity are in excellent agreement with those of Coutanceau & Bouard a t  all 
values of R, and our locations of the maxima are in close agreement with those of the 
same authors for all values of R less than 30. There is insufficient experimental data 
to provide confident determination of an experimental value for this location at  
R = 40 but it would appear that our result for this case is a little low and that that of 
Nieuwstadt & Keller may be the more accurate. 

The comparisons in figures 1 to 3 show that our results for steady state quantities 
are in excellent agreement with the experimental data for the range 5 < R < 26.67 
and, in this range, they appear to be at least as accurate as the best of the other 
numerical results. Beyond this range, i.e. at values of R of 1 and 40 the accuracy of 
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FIGURE 2. Length of closed wake bubble and separation angle. Experimental results: -, 
Coutanceau & Bouard (1977). Numerical solutions: 0, this study; 8, Nieuwstadt & Keller 
(1973); m, Dennis & Chang (1970); ‘I, Collins &Dennis (1973); 0, Apelt (1958). 

our results is not quite so good but it is still quite sufficient for the purposes of the 
study, taking into account the linlitations of the mathematical model discussed in 3 2. 

4.2. Steady state heat transfer 

The variation with R of the heat transfer from the cylinder at  steady state conditions 
is shown in figure 4. The heat transfer is expressed in non-dimensional terms as the 
Nusselt number Nu, defined as 

Our results for Nu are compared with the experimental data of Collis &, Williams 
(1959) and the results of the numerical solutions of Dennis et al. (1968). The curve 
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FIQURE 3. Magnitude and location of reverse velocity on centreline of closed wake bubble. Experi- 
mental results: - , Coutanoeau & Bouard (1977). Numerical solutions: 0, this study; 8,  
Nieuwstadt & Keller (1973); 0, Apelt (1958). 

shown as the result of Collis & Williams is their curve of best fit to the data for 
0.02 < R < 44, i.e. 

with Th/T& set to unity. TA is the arithmetic mean of the temperature of the cylinder 
T&, and that of the approaching fluid TL. The ratio Th/TL accounts to a large extent 
for the effects of temperature on fluid properties in the correlations of Collis & Williams 
and it is appropriate to set it to unity for comparison with the results of the numerical 
solutions since, in both sets, the fluid properties were treated as being unaffected by 
temperature. It can be seen from figure 4 that the values of N u  obtained from the two 
different sets of numerical solutions are in close agreement; the values of N u  agree 
within less than 1 yo except a t  R = 1 where the difference is still only 5 yo. The 
numerical methods used in producing the two sets of results are quite different and the 
close agreement between the results provides strong evidence for the accuracy of the 
values of N u  obtained by each of them. Both sets of results give larger values of N u  
than indicated by the correlation of Collis & Williams. In the range 5 < R < 26.67, our 
values for N u  are between 3 and 5 yo larger than the corresponding ' best-fit ' value 
of Collis & Williams and at R = 1 and 40 our result is 8 %  larger. Such agreement 
with experimental results seems to be about as close as one could realistically hope 
for when the limitations of the mathematical model are taken into account. 

Nu(TA/T;)-@~' = 0.24 + 0*56R0'45 (10) 

26 
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FIUURE 4. Variation of average Nusselt number with Reynolds number. Experimental results : 
-, Collis & Williams (1959). Numerical solutions: 0, this study; A, Dennis, Hudson & Smith 
(1908). 

4.3. Unsteady JEows 
Impulsive starts from rest. Some of the results obtained for impulsive starts from 

rest are shown in figure 5. The two cases correspond to final steady state values of 
R of 5 and 26.67. The results in figure 5 were obtained at the coarser discretization 
corresponding to n = 10, as discussed in 5 3.4, and their accuracy is not as good as that 
of the rest of our results. They are presented here because they provide some useful 
qualitative information. In  both cases, all three drag coefficients pass through a 
minimum followed by a local maximum before they settle down to a monotonic decay 
to steady state values. The initial oscillations are sensitive to the discretization used, 
as has been demonstrated by Ingham (1968), but a t  later times the monotonic decay 
is similar to that described by other authors, e.g. Thoman & Szewczyk (1969). 

In  contrast, Nu decays monotonically from its initial large value throughout the 
whole of the transient, in both cases. Just before the flow is started impulsively the 
fluid everywhere is a t  the temperature of the fluid at r+cc and, theoretically, the 
initial value of N u  at the beginning of motion is infinitely large. However, the finite 
mesh length ‘smears out ’ the infinitely large gradient of T at the surface of the cylinder 
to produce a finite gradient over one mesh length. The initial value of aT/ar at r = 1 
and the initial value of N u  are, therefore, dependent on the spatial discretization and 
on the method used for calculating aT/ar. In  our computations it is 3n/7rr. 

Impulsive increases in velocity. The responses of drag forces and of heat transfer 
to impulsive increases in velocity of 50 yo from initial values of R of 1, I 0  and 26.67 
are shown in figure 6. The quantities plotted in figure 6 have been normalized with 
respect to the steady state values they had at the initial, lower Reynolds number. In  
all cases each of the drag coefficients, Cot, CDp and CDf, decreases from its value 
corresponding to the initial steady state as soon as the increase of velocity is imposed, 
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FIGURE 5 .  Variation with time of Nusselt number and of drag coefficients for impulsive starts from 
rest to Reynolds numbers of 5 and 26.67: -, Nu; - - -, Cot; - - -, CD,; - - -, CD,; -O-O-, Nu 
for sudden increase in temperature a t  R = 5.  

in proportion to  1/R. Thereafter, the effects of viscosity adjust the velocity field to 
that appropriate to the new, larger value of R and each drag coefficient increases 
monotonically to approach its final steady state value asymptotically. In  contrast, 
the impulsive change in flow velocity does not produce an instantaneous change in 
N u  since the temperature in the vicinity of the cylinder is not changed instantaneously 
and it responds smoothly to the effects of changes in the vklocity field as these develop 
after the impulse is applied. Consequently, N u  increases monotonically throughout 
the transient, showing initially a relatively rapid rate of increase followed at  a later 
time by an asymptotic approach to the new steady state value. 

26-2 
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FIGURE 6 .  Responses of drag forces and of heat transfer to impulsive increases in velocity of 
60%; ( 1 )  R =  1-+1.5; ( 2 )  R =  10+15; ( 3 )  R = 2 6 . 6 7 + 4 0 .  - , Nu; - --, Cot; ---, 00,; 

s CD, .  

The speed of response to the disturbance of all quantities increases with the value 
of R of the initial flow state and, a t  each value of R, the drag coefficients respond more 
rapidly than does the heat transfer. An indication of these relative speeds is given by 
the magnitudes of the 'time constant ' 7 ,  which is used here as the time taken for the 
response to reach 0.63 of the increment to the final value. In  order corresponding to 
initial values of R of 1, 10 and 26.67 the values of 7 for C,, are 4.4, 0.86 and 0.38, 
respectively, while the values of 7 for Nu are 6.7, 2-33 and 1.61, respectively. 

The results presented in figures 5 and 6 provide justification for the use in hot-wire 
anemometry of steady state heat transfer relations, since the thermal transients 
which result from step changes in velocity in the range of R studied have time scales 
of order lOa/ U or less and this is much less than any other time scale encountered in 
practical anemometry. 

Preliminary computations showed that a time step for numerical integration 
determined in accordance with Q 3.4 was satisfactory for the case when R increases 
from 1 to 1-5. However, when the other two cases were computed with the corres- 
ponding time step, small oscillations in C,, occurred during the early part of the tran- 
sient. A reduction of the time step to half the value indicated in $3.4 in these two 
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cases resulted in completely smooth responses. In  order to test further the sensitivity 
of the transients to the length of time step used in the numerical integration, each of 
the cases was recomputed through the early part of the transient with the time step 
set at  one half that indicated above. The response curves for drag coefficients were 
only slightly affected by this halving of the time step and, when the origin of time was 
set at  the end of the first time step rather than at the beginning, the curves became 
virtually identical. For this reason the origin of time for the curves of drag coefficients 
in figure 6 has been set at the end of the first time step. On the other hand, the response 
curves for Nu were virtually identical for all stable time steps, without adjustment 
of the origin of time. 

Periodicfluctuations in velocity. The effects on drag and on heat transfer of a periodic 
fluctuation in the magnitude of the flow velocity are shown in figure 7. The velocity 
fluctuation imposed was a sinusoidal variation of amplitude 10 yo, about a mean flow 
at R = 10 to give a range of R from 9 to 11. The angular frequency, 1/2.3, was chosen 
to be approximately the reciprocal of the time constant for the heat transfer response. 
The temperature of the cylinder was maintained constant throughout. The calculated 
response curves are compared in figure 7 with curves which show the steady state 
values of the quantities associated with the instantaneous value of R; these latter 
will be referred to as the 'quasi-steady' response curves. It is noted that even these 
quasi-steady response curves are not sinusoidal because the drag and heat transfer 
are not linear functions of R. All of the calculated responses exhibit a small decaying 
transient resulting from the initial instantaneous change from steady flow to the 
fluctuating flow but this has virtually disappeared after the first half period and, 
thereafter, the calculated response is very nearly periodic, as shown by the summary 
in table 1, which lists the amplification of the response at the successive stationary 
values, relative to the quasi-steady response. 

The response of each of the three drag coefficients to the velocity fluctuations is 
larger in amplitude than the corresponding quasi-steady response and the response 
leads the velocity fluctuation. The magnitudes of the phase lead, calculated from the 
average of the last three crossings in figure 7, are 12.05", 14.2' and 10.1' for Cot, 
C,, and C,,, respectively. In  contrast, the heat transfer response is smaller in amplitude 
than the corresponding quasi-steady response and lags the velocity fluctuation, the 
phase lag averaged over the last three crossings being 41. lo. It is interesting to compare 
this result with that obtained by Davies (1976) fox R < 1 by means of an Oseen type 
of solution. He found that, at low frequenciqs, the fluctuating component of heat 
transfer is in phase with the velocity, the magnitude being given by the result for 
steady heat transfer but that, at  high frequencies, the heat transfer lags the velocity 
by in, the relative magnitude of heat transfer decreasing as (frequency)-'. Davies 
estimated that the minimum value of the Strouhal number of the impressed fluctuations 
at which time derivatives become important is N 0-1RPr. Applied to the case we 
have calculated, this gives a minimum Strouhal number of 0.7 while the frequency of 
our calculations corresponds to a Strouhal number of 0.87. Thus, even though our 
calculations were done about R = 10, it appears that the response is generally con- 
sistent with that implied by the analysis of Davies for intermediate frequencies a t  
R e  1. 
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FIGURE 7. For legend see facing page. 

Amplification factor 
Order of stationary r A \ 

value C D ,  C D ,  C D f  Nu 
First 1.224 1.280 1.180 0.751 
Second 1.245 1.236 1-266 0.712 
Third 1.295 1.334 1.228 0.698 
Fourth 1.244 1.236 1.264 0.718 

TABLE 1. Amplification at successive stationary values in 
response to sinusoidal velocity fluctuation. 
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FIGURE 7. Responses of drag forces and of heat transfer to  periodic fluctuation in velocity about 
a mean flow at R = 10: (a) Nusselt number; ( b )  total drag coefficient; (c )  pressure drag coefficient; 
( d )  friction drag coefficient. -, computed response; ---, ' quasi-steady' response. 

t 

4.4. Instantaneous increase in temperature of cylinder 

The response of heat transfer when the temperature of the cylinder is increased 
instantaneously was computed for steady flows a t  R = 1, 5 and 40. Since the fluid 
properties have been assumed invariant with temperature, the equation (3a) is linear 
in T and the results are shown in figure 8 in the form (Nu(t)-Nu(O))/(AT,Nu(O)), 
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FIGURE 8. Response of heat tra.ns€er to an instantaneous increase in the temperature of the 
cylinder. - - -, R = 1; - , R = 5 ;  ---, R = 40. 

denoted by a(t), which expresses the increase in heat transfer from the initial steady 
state value per unit of increase in the temperature of the cylinder, as a proportion 
of the initial steady state value. AT, denotes the increase in the temperature of the 
cylinder. The asymptotic value of a(t)  for t - tco is unity. The initial value of a(t)  is, 
theoretically, infinite but the finite mesh length ‘smears out’ the initial, infinitely 
large gradient of T at the surface of the cylinder to produce a finite gradient over one 
mesh length. Consequently, the initial value of a(t) is dependent on the spatial dis- 
cretization and also on the method used for numerical differentiation. In  our case, the 
initial value of (Nu(t)  - Nu(O))/AT, is 19-1 in each case but the initial value of a(t) 
varies because N u ( 0 )  varies with R. 

The response curves in figure 8 all show an initial rapid decay followed by a slow 
asymptotic approach to the final steady state. At the beginning of the transient, 
diffusion predominates and, as can be predicted from equation (3a) ,  the decay rate 
is nearly proportional to 1/R. At later times, the effects of diffusion become much 
smaller, convection becomes proportionately more important; the decay rates are 
small and, for t > 2, their magnitudes increase with R. 

The transients of heat transfer for this case of an instantaneous increase in the 
temperature of the cylinder are similar in shape to those associated with the impulsive 
start up from rest of the flow past a cylinder which is held a t  a constant temperature. 
To illustrate this similarity, the response to the instantaneous increase in temperature 
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of a cylinder in steady flow a t  R = 5 is also shown in figure 5, with the Nusselt number 
calculated with reference to the new temperature of the cylinder. The resemblance 
to the case of impulsive start-up to R = 5 is apparent. 

5. Closure 
The results of the numerical solutions presented here provide new information 

about heat transfer from a heated cylinder in unsteady flows and, in our discussion, 
we have concentrated on those matters considered to be of interest from the view 
point of the fluid dynamics. The application of these results to the analysis and design 
of constant resistance hot-wire anemometers is dealt with by Bullock & Ledwich (1973). 
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